Commonly Used Notations

Probability Notations

- $(\Omega, \mathcal{F}, \mathbf{P})$: probability space. •
- $\mathcal{F}_t, \mathcal{B}_t$: filtrations of σ -algebras. •
- P: probability measure. •
- Q: risk-neutral measure. •
- Q^B : spot Libor measure. •
- Q^T , Q^n : forward measure for time T or T_n (given tenor structure).
- $Q^{n,m}$: swap measure for swap rate $S_{n,m}$ (given tenor structure). •
- \mathbf{Q}^N : measure for numeraire N. •
- •
- E, E^P, E^Q, E^T, Eⁿ, E^{n,m}, E^A, ...: expectations under various measures. E_t, E^P_t, E^Q_t, E^T_t, Eⁿ_t, E^{n,m}_t, E^A_t, ...: expectations conditional on \mathcal{F}_t under • various measures.
- $Z(t), W(t), W^{T}(t), W^{n}(t), W^{n,m}(t), W^{A}(t), \ldots$: Brownian motions un-• der various probability measures.
- $\operatorname{Var}(X)$: variance of X.
- Stdev(X): standard deviation of X. •
- Cov(X, Y): covariance of X, Y. •
- $\operatorname{Corr}(X, Y)$: correlation of X, Y. •
- $\mathcal{N}(\mu, \Sigma)$: Gaussian distribution with mean μ and variance-covariance • matrix Σ .
- $\mathcal{LN}(\mu, \sigma^2)$: log-normal distribution with mean μ and variance σ^2 .
- $\mathcal{U}(a, b)$: uniform distribution on an interval [a, b].
- $\Phi(z)$: standard Gaussian CDF, $\phi(z)$: standard Gaussian PDF.
- $\Gamma(a, x)$: the (upper) incomplete Gamma function, $\Gamma(a, x)$ = $\int_{x}^{\infty} u^{a-1} e^{-u} du.$ $\Gamma(a)$: the Gamma function, $\Gamma(a) = \Gamma(a, 0).$
- $\mathcal{E}(X(t))$: Doleans exponential martingale for the process X(t).
- $\langle X(t) \rangle$, $\langle X(t), Y(t) \rangle$: quadratic variation and covariation. •

XXXVI Notations

Finance Notations

- $T_0 < T_1 < \ldots < T_N$: tenor structure.
- τ_n : year fraction between T_n and T_{n+1} .
- $\beta(t)$: continuously compounded money market account.
- B(t): discretely compounded money market account.
- P(t,T): zero-coupon (or discount) bond price at time t for maturity T.
- P(t,T,S): forward bond price at time t, for delivery of S-maturity discount bond at time $T, T \leq S$.
- y(t, T, S): continuously compounded forward yield at time t for the period [T, S].
- f(t,T): instantaneous forward rate at t for maturity T.
- r(t): short rate at time t, r(t) = f(t, t).
- L(t,T,S): forward Libor rate at time t for the period [T,S].
- $L_n(t)$: forward Libor rate at t for the period $[T_n, T_{n+1}]$, given a tenor structure, $L_n(t) = L(t, T_n, T_{n+1})$.
- $S_{n,m}(t)$: forward swap rate at time t, starting at T_n and with the final payment date at T_{n+m} (given a tenor structure).
- $A_{n,m}(t)$: annuity at time t, with the first payment date T_{n+1} and the final payment date T_{n+m} (given a tenor structure).
- $U_n(t)$: the *n*-th exercise ("underlying") value of a Bermudan swaption or a callable Libor exotic.
- $H_n(t)$: the *n*-th hold value of a Bermudan swaption or a callable Libor exotic.
- $\sigma_{\rm B}(t, S; T, K)$: an implied Black volatility smile, parameterized by the time t spot S, strike K and expiry T.
- $c_{\rm B}(t, S; T, K), c_{\rm B}(t, S; T, K, \sigma)$: price of a call option in the Black model with time t spot S, strike K, expiry T and Black volatility σ .
- $c_{\rm N}(t, S; T, K)$, $c_{\rm N}(t, S; T, K, \sigma)$: price of a call option in the Gaussian (Normal, or Bachelier) model with time t spot S, strike K, expiry T and Normal volatility σ .

Miscellaneous Notations

- $\operatorname{Re}(z)$, $\operatorname{Im}(z)$: real and imaginary part of a complex number z.
- $O(\cdot), o(\cdot)$: "Big O" and "Little o" order symbols.
- $1_{\{A\}}$: indicator of A.
- L^1 and L^2 : spaces of integrable and square-integrable random variables, vectors, or functions.
- C^n : space of functions with the *n*-th continuous derivative, i.e $C = C^0$ are continuous functions, C^1 are differentiable functions with continuous derivative, C^2 are twice-differentiable functions with continuous second-order derivative, etc.

Notations XXXVII

- \mathcal{L}, \mathcal{J} : differential operators, e.g. $a \partial/\partial x + b \partial^2/\partial x^2$ or $\partial/\partial t + a \partial/\partial x + b \partial^2/\partial x^2$.
- $(\mathcal{F}f)(\omega), (\mathcal{F}^{-1}\varphi)(x)$: direct and inverse Fourier transforms.
- \triangleq : "is defined as", e.g. $f(x) \triangleq x^2$.
- x^+ , x^- : maximum and minimum of x and 0, i.e. $x^+ = \max(x, 0)$, $x^- = \min(x, 0)$.
- $\lfloor x \rfloor$: integer part of real number x.
- \overline{A}^{\top} : transpose of matrix A.
- det(A): the determinant of a square matrix A.
- tr(A): the trace of a square matrix A.
- $\operatorname{diag}(a)$: a square matrix with the vector a on the diagonal and zeros elsewhere.